Asymptotic analysis of the bifurcation diagram for symmetric one-dimensional solutions of the Ginzburg-Landau equations

نویسندگان

  • A. AFTALION
  • S. J. CHAPMAN
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation

‎In this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-‎dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method‎, homogeneous balance method, extended F-expansion method‎. ‎By ‎using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...

متن کامل

Asymptotic analysis of a secondary bifurcation of theone - dimensional

________________________ ________________________ UPERIEURE S ORMALE N ECOLE Asymptotic analysis of a secondary bifurcation of the one-dimensional Ginzburg-Landau equations of superconductivity A. AFTALION Asymptotic analysis of a secondary bifurcation of the one-dimensional Ginzburg-Landau equations of superconductivity A. AFTALION Abstract The bifurcation of asymmetric superconducting solutio...

متن کامل

On the Global Bifurcation Diagram for the One-Dimensional Ginzburg-Landau Model of Superconductivity

Some new global results are given about solutions to the boundary value problem for the Euler-Lagrange equations for the Ginzburg-Landau model of a one-dimensional superconductor. The main advance is a proof that in some parameter range there is a branch of asymmetric solutions connecting the branch of symmetric solutions to the normal state. Also, simplified proofs are presented for some local...

متن کامل

Exact solutions of the 2D Ginzburg-Landau equation by the first integral method

The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.

متن کامل

Asymptotic Analysis of a Secondary Bifurcation of the One-Dimensional Ginzburg-Landau Equations of Superconductivity

The bifurcation of asymmetric superconducting solutions from the normal solution is considered for the one-dimensional Ginzburg–Landau equations by the methods of formal asymptotics. The behavior of the bifurcating branch depends on the parameters d, the size of the superconducting slab, and κ, the Ginzburg–Landau parameter. The secondary bifurcation in which the asymmetric solution branches re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998